Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Kee-Ahn Lee 8 Articles
Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target
Young-Min Jin, Min-Gwang Jeon, Dong-Yong Park, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
J Powder Mater. 2013;20(4):245-252.
DOI: https://doi.org/10.4150/KPMI.2013.20.4.245
  • 12 View
  • 0 Download
  • 4 Citations
AbstractAbstract PDF
This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the alpha-Cu and Cu_3Ga were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Citations

Citations to this article as recorded by  
  • Microscopic Examination of Cold Spray Cermet Sn+In2O3Coatings for Sputtering Target Materials
    M. Winnicki, A. Baszczuk, M. Rutkowska-Gorczyca, M. Jasiorski, A. Małachowska, W. Posadowski, Z. Znamirowski, A. Ambroziak
    Scanning.2017; 2017: 1.     CrossRef
  • Effect of powder alloy composition on the microstructure and properties of kinetic sprayed Cu-Ga based coating materials
    Byung-Chul Choi, Dong-Yong Park, Kee-Ahn Lee
    Metals and Materials International.2016; 22(4): 649.     CrossRef
  • Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders
    Min-Gwang Jeon, Myeong-Ju Lee, Hyeong-Jun Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(3): 229.     CrossRef
  • Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment
    Min-Gwang Jeon, Hyung-Jun Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(5): 349.     CrossRef
Effect of Carrier Gases on the Microstructure and Properties of Ti Coating Layers Manufactured by Cold Spraying
Myeong-Ju Lee, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
J Powder Mater. 2013;20(1):24-32.
DOI: https://doi.org/10.4150/KPMI.2013.20.1.024
  • 17 View
  • 0 Download
AbstractAbstract PDF
The effect of carrier gases (He, N_2) on the properties of Ti coating layers were investigated to manufacture high-density Ti coating layers. Cold spray coating layers manufactured using He gas had denser and more homogenous structures than those using N_2 gas. The He gas coating layers showed porosity value of 0.02% and hardness value of Hv 229.1, indicating more excellent properties than the porosity and hardness of N_2 gas coating layers. Bond strengths were examined, and coating layers manufactured using He recorded a value of 74.3 MPa; those manufactured using N_2 gas had a value of 64.6 MPa. The aforementioned results were associated with the fact that, when coating layers were manufactured using He gas, the powder could be easily deposited because of its high particle impact velocity. When Ti coating layers were manufactured by the cold spray process, He carrier gas was more suitable than N_2 gas for manufacturing excellent coating layers.
Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process
Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
J Korean Powder Metall Inst. 2012;19(6):435-441.
DOI: https://doi.org/10.4150/KPMI.2012.19.6.435
  • 34 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of 1350°C, 1400°C, 1450°C, and 1500°C, respectively, in H_2 atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at 1000°C in a 79% N_2+21% O_2 to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at 1500°C sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

Citations

Citations to this article as recorded by  
  • Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process
    Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(1): 55.     CrossRef
Effects of Powder Morphology and Powder Preheating on the Properties and Deposition Behavior of Titanium Coating Layer Manufactured by Cold Spraying
Jae-Nam Hwang, Myeong-Ju Lee, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
J Korean Powder Metall Inst. 2012;19(5):348-355.
DOI: https://doi.org/10.4150/KPMI.2012.19.5.348
  • 26 View
  • 0 Download
  • 6 Citations
AbstractAbstract PDF
Cold spray deposition using Titanium powder was carried out to investigate the effects of powder morphology and powder preheating on the coating properties such as porosity and hardness. The in-flight particle velocity of Ti powder in cold spray process was directly measured using the PIV (particle image velocimetry) equipment. Two types of powders (spherical and irregular ones) were used to manufacture cold sprayed coating layer. The results showed that the irregular morphology particle appeared higher in-flight particle velocity than that of the spherical one under the same process condition. The coating layer using irregular morphology powder represented lower porosity level and higher hardness. Two different preheating conditions (no preheating and preheating at 500°C) were used in the process of cold spraying. The porosity decreased and the hardness increased by conducting preheating at 500°C. It was found that the coating properties using different preheating conditions were dependent not on the particle velocity but on the deformation temperature of particle. The deposition mechanism of particles in cold spray process was also discussed based on the experimental results of in flight-particle velocity.

Citations

Citations to this article as recorded by  
  • Solid-state cold spray additive manufacturing of pure tantalum with extraordinary high-temperature mechanical properties
    Young-Kyun Kim, Hyung-Jun Kim, Kee-Ahn Lee
    Journal of Materials Research and Technology.2023; 23: 5698.     CrossRef
  • Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys
    K.C. Bae, J.J. Oak, Y.H. Kim, Y.H. Park
    Archives of Metallurgy and Materials.2017; 62(2): 1105.     CrossRef
  • Effects Of Process Parameters On Cu Powder Synthesis Yield And Particle Size In A Wet-Chemical Process
    Y.M. Shin, J.-H. Lee
    Archives of Metallurgy and Materials.2015; 60(2): 1247.     CrossRef
  • Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings
    GyeongJun Byun, JaeIck Kim, Changhee Lee, SeeJo Kim, Seong Lee
    Journal of Welding and Joining.2014; 32(5): 72.     CrossRef
  • Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders
    Min-Gwang Jeon, Myeong-Ju Lee, Hyeong-Jun Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(3): 229.     CrossRef
  • Effect of Carrier Gases on the Microstructure and Properties of Ti Coating Layers Manufactured by Cold Spraying
    Myeong-Ju Lee, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2013; 20(1): 24.     CrossRef
Effect of Heat Treatment Environment on the Densification of Cold Sprayed Ti Coating Layer
Ji-Sang Yu, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
J Korean Powder Metall Inst. 2012;19(2):110-116.
DOI: https://doi.org/10.4150/KPMI.2012.19.2.110
  • 18 View
  • 0 Download
  • 6 Citations
AbstractAbstract PDF
This study investigated the effects of annealing environment for the densification and purification properties of pure titanium coating layer manufactured by cold spraying. The annealing was conducted at 600°C/1 h and three kinds of environments of vacuum, Ar gas, and 5%H_2+Ar mixture gas were controlled. Cold sprayed Ti coating layer (as sprayed) represented 6.7% of porosity and 228 HV of hardness, showing elongated particle shapes (severe plastic deformation) perpendicular to injection direction. Regardless of gas environments, all thermally heat treated coating layers consisted of pure alpha-Ti and minimal oxide. Vacuum environment during heat treatment represented superior densification properties (3.8% porosity, 156.7 HV) to those of Ar gas (5.3%, 144.5 HV) and 5%H_2+Ar mixture gas (5.5%, 153.1 HV). From the results of phase analysis (XRD, EPMA, SEM, EDS), it was found that the vacuum environment during heat treatment could be effective for reducing oxide contents (purification) in the Ti coating layer. The characteristic of microstructural evolution with heat treatment was found to be different at three different gas environments. The controlling method for improving densification and purification in the cold sprayed Ti coating material was also discussed.

Citations

Citations to this article as recorded by  
  • Effect of Hot Isostatic Pressing on the Microstructure and Propertiesof Kinetic Sprayed Nb Coating Material
    Ji-Hye Lee, Sangsun Yang, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2016; 23(1): 15.     CrossRef
  • Fabrication and Microstructure/Properties of Bulk-typeTantalum Material by a Kinetic Spray Process
    Ji-Hye Lee, Ji-Won Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2016; 23(1): 8.     CrossRef
  • Effect of Heat Treatment Environment on the Microstructure and Properties of Kinetic Sprayed Tantalum Coating Layer
    Ji-Hye Lee, Hyung-Jun Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2015; 22(1): 32.     CrossRef
  • Effect of Powder Preheating Temperature on the Properties of Titanium Coating Layers Manufactured by Kinetic Spraying
    Kee-Ahn Lee, Myeong-Ju Lee, Ji-Sang Yu, Hyung-Jun Kim
    MATERIALS TRANSACTIONS.2014; 55(3): 622.     CrossRef
  • Effect of Carrier Gases on the Microstructure and Properties of Ti Coating Layers Manufactured by Cold Spraying
    Myeong-Ju Lee, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2013; 20(1): 24.     CrossRef
  • Effects of Powder Morphology and Powder Preheating on the Properties and Deposition Behavior of Titanium Coating Layer Manufactured by Cold Spraying
    Jae-Nam Hwang, Myeong-Ju Lee, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2012; 19(5): 348.     CrossRef
Effect of Heat Treatment Environment on the Properties of Cold Sprayed Cu-15 at.%Ga Coating Material for Sputtering Target
Byung-Chul Choi, Dong-Yong Park, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
J Korean Powder Metall Inst. 2011;18(6):552-561.
DOI: https://doi.org/10.4150/KPMI.2011.18.6.552
  • 23 View
  • 0 Download
  • 9 Citations
AbstractAbstract PDF
This study attempted to manufacture a Cu-15 at.%Ga coating layer via the cold spray process and investigated the effect of heat treatment environment on the properties of cold sprayed coating material. Three kinds of heat treatment environments, 5%H_2+argon, pure argon, and vacuum were used in this study. Annealing treatments were conducted at 200sim800°C/1 hr. With the cold sprayed coating layer, pure alpha-Cu and small amounts of Ga_2O_3 were detected in the XRD, EDS, EPMA analyses. Porosity significantly decreased and hardness also decreased with increasing annealing temperature. The inhomogeneous dendritic microstructure of cold sprayed coating material changed to the homogeneous and dense one (microstructural evolution) with annealing heat treatment. Oxides near the interface of particles could be reduced by heat treatment especially in vacuum and argon environments. Vacuum environment during heat treatment was suggested to be most effective one to improve the densification and purification properties of cold sprayed Cu-15 at.%Ga coating material.

Citations

Citations to this article as recorded by  
  • Manufacturing of Large-Scale Cold-Sprayed Ta Target Material and Its Sputtering Property
    Gi-Su Ham, Dong-Yeol Wi, Jun-Mo Yang, Kee-Ahn Lee
    Journal of Thermal Spray Technology.2019; 28(8): 1974.     CrossRef
  • Effect of Hot Isostatic Pressing on the Microstructure and Propertiesof Kinetic Sprayed Nb Coating Material
    Ji-Hye Lee, Sangsun Yang, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2016; 23(1): 15.     CrossRef
  • Fabrication and Microstructure/Properties of Bulk-typeTantalum Material by a Kinetic Spray Process
    Ji-Hye Lee, Ji-Won Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2016; 23(1): 8.     CrossRef
  • Effect of Heat Treatment Environment on the Microstructure and Properties of Kinetic Sprayed Tantalum Coating Layer
    Ji-Hye Lee, Hyung-Jun Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2015; 22(1): 32.     CrossRef
  • The Effect of Annealing Heat Treatment on the Microstructure and Macroscopic Properties of Kinetic-Sprayed Ta Coating Layer
    Myeong Ju Lee, Jae Sung Oh, Hyung Jun Kim, Ik Hyun Oh, Kee Ahn Lee
    Advanced Materials Research.2014; 893: 64.     CrossRef
  • Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment
    Min-Gwang Jeon, Hyung-Jun Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(5): 349.     CrossRef
  • Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders
    Min-Gwang Jeon, Myeong-Ju Lee, Hyeong-Jun Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(3): 229.     CrossRef
  • Effect of Heat Treatment Environment on the Densification of Cold Sprayed Ti Coating Layer
    Ji-Sang Yu, Hyung-Jun Kim, Ik-Hyun Oh, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2012; 19(2): 110.     CrossRef
  • Sintering and Rolling Behavior of Cu-50In-13Ga Ternary Alloy Powder for Sputtering Target
    Dae-Won Kim, Yong-Ho Kim, Jung-Han Kim, Dae-Guen Kim, Jong-Hyeon Lee, Kwang-Bo Choi, Hyeon-Taek Son
    Journal of Korean Powder Metallurgy Institute.2012; 19(4): 264.     CrossRef
Manufacturing and Properties of Low Vacuum Plasma Sprayed W-Carbide Hybrid Coating Layer
Jin-Hyeon Cho, Young-Min Jin, Jee-Hoon Ahn, Kee-Ahn Lee
J Korean Powder Metall Inst. 2011;18(3):226-237.
DOI: https://doi.org/10.4150/KPMI.2011.18.3.226
  • 12 View
  • 0 Download
AbstractAbstract PDF
W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 µM or above in thickness. As the substrate preheating temperature increased from 870°C to 917°C, the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.
High Temperature Oxidation Behavior of Ni based Porous Metal
Sung-Hwan Choi, Jung-Yeul Yun, Hye-Mun Lee, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
J Korean Powder Metall Inst. 2011;18(2):122-128.
DOI: https://doi.org/10.4150/KPMI.2011.18.2.122
  • 24 View
  • 0 Download
  • 7 Citations
AbstractAbstract PDF
This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of 900°C, 1000°C and 1100°C. The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as Al_2O_3, Cr_2O_3, NiAl_2O_4, and NiCr_2O_4. In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.

Citations

Citations to this article as recorded by  
  • Effect of Strut Thickness on Room and High Temperature Compressive Properties of Block-Type Ni-Cr-Al Powder Porous Metals
    B.-H. Kang, M.-H. Park, K.-A. Lee
    Archives of Metallurgy and Materials.2017; 62(2): 1329.     CrossRef
  • Fabrication of metallic alloy powder (Ni3Fe) from Fe–77Ni scrap
    Inseok Seo, Shun-Myung Shin, Sang-An Ha, Jei-Pil Wang
    Journal of Alloys and Compounds.2016; 670: 356.     CrossRef
  • Preparation of oxide powder by continuous oxidation process from recycled Fe-77Ni alloy scrap
    J Y Yun, D H Park, G J Jung, J P Wang
    IOP Conference Series: Materials Science and Engineering.2015; 103: 012026.     CrossRef
  • Reduction of High Nickel-Based Oxide Particles Using Hydrogen Gas
    Sung Ho Joo, Shun Myung Shin, Dong Ju Shin, Jei Pil Wang
    Applied Mechanics and Materials.2015; 778: 148.     CrossRef
  • Fabrication of oxide powder from Fe–46Ni alloy scrap
    J.-Y. Yun, D.-W. Lee, S.-M. Shin, J.-P. Wang
    Materials Research Innovations.2015; 19(sup5): S5-415.     CrossRef
  • Evaluation of Creep Reliability of Powder Metallurgy and Cast-type Ni-based Superalloy by Using Ultrasonic Wave
    Chan-Yang Choi, Jin-Hun Song, Se-Ung Oh, Chung-Seok Kim, Sook-In Kwun, Sung-Tag Oh, Chang-Yong Hyun, Jai-Won Byeon
    Journal of Korean Powder Metallurgy Institute.2012; 19(3): 215.     CrossRef
  • Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process
    Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2012; 19(6): 435.     CrossRef

Journal of Powder Materials : Journal of Powder Materials